Government of Pakistan

National Vocational and Technical Training Commission

Prime Minister's Hunarmand Pakistan Program

"Skills for All"

Course Contents / Lesson Plan Course Title: Digital and Precision Agriculture Duration: 3 Months

Revised Edition

Trainer Name	
Course Title	Digital and Precision Agriculture
Objectives and Expectations	 Employable skills and hands on practice for Digital and Precision Agriculture This course provides a comprehensive and interdisciplinary educational opportunity tailored for individuals aspiring to embark on careers in Digital and Precision Agriculture. The primary goal of the curriculum is to furnish students with the requisite knowledge and competencies essential for the effective implementation and utilization of cutting-edge technologies in agricultural practices. Throughout the duration of this course, students will be immersed in the foundational concepts and applications of digital and precision technologies within the agricultural domain. The curriculum is meticulously crafted to empower students with a robust skill set, enabling them to adeptly apply technological advancements to enhance efficiency and productivity in farming operations. Expectations: The curriculum for Digital and Precision Agriculture aims to equip students with the knowledge and skills needed to leverage modern technology for efficient and sustainable agricultural practices. i. Proficiency in utilizing digital and precision technologies such as sensors, GPS, and satellite imagery for data collection and analysis in agriculture. ii. Opportunities for hands-on experiences, field visits, internships, and projects to apply theoretical knowledge in real-world agricultural settings. iii. Develop problem-solving skills to address challenges in digital agriculture, considering both technological and agricultural perspectives.
Entry-level of trainees	Intermediate
Learning Outcomes of the course	 By the end of this course, students will be able: To gain overview of different Precision Agriculture Technologies Global Positioning System (GPS) Yield Monitoring Site-Specific Fertilization Smart Irrigation Systems Spot-Application of Pesticides Conductivity Survey and Mapping Unmanned Aerial Vehicles Artificial Intelligence Acquire proficiency in various soil sampling methodologies, encompassing practical applications and considerations. Explore and known about interpolation techniques relevant to precision agriculture, understanding their significance in data analysis and decision-making. Artificial Intelligence Fundamental concepts of machine learning Overview of machine learning and deep learning methodologies Strategies to optimize the performance of the models through hyper parameter tuning Gain information about dataset repositories crucial for model training Difference between classification and detection algorithms in the field of agriculture Hands-on training session of classification algorithms in agriculture domain.
Course Execution Plan	The total duration of the course: 3 months (12 Weeks) Class hours: 4 hours per day

Companies offering jobs in the respective trade	Theory: 20% Practical: 80% Weekly hours: 20 hours per week Total contact hours: 240 hours 1- AgTech Startups 2- Freelancing 3- Precision Agriculture Technology Providers 4- Government agency
	5- Research Institutions
Job Opportunities	 Digital and Precision Agriculture Specialist/Consultant Research Assistant Agriculture Surveyor Freelancer
No of Students	25
Learning Place	Classroom / Lab/Ground
Instructional Resources	 <u>https://www.sciencedirect.com/book/9780443189531/precision-agriculture</u> Precision Agriculture' 19 by John V. Stafford, ISBN: 9789086863372 <u>https://people.engr.tamu.edu/guni/csce421/files/A1 Russell Norvig.pdf</u> Digital and Precision Agriculture Haroon, Z., Cheema, M. J. M., Saleem, S., Amin, M., Anjum, M. N., Tahir, M. N., & Khan, F. (2023). Potential of Precise Fertilization through Adoption of Management Zones Strategy to Enhance Wheat Production. <i>Land</i>, <i>12</i>(3), 540. Khan, F., Zafar, N., Tahir, M. N., Aqib, M., Waheed, H., & Haroon, Z. (2023). A mobile-based system for maize plant leaf disease detection and classification using deep learning. <i>Frontiers in Plant Science</i>, <i>14</i>, 1079366. Khan, F., Zafar, N., Tahir, M. N., Aqib, M., Saleem, S., & Haroon, Z. (2022). Deep learning-based approach for weed detection in potato crops. <i>Environmental Sciences Proceedings</i>, <i>23</i>(1), 6. Haroon, Z., Cheema, M. J. M., Saleem, S., Anjum, M. N., Amin, M., Tahir, M. N., & Khan, F. (2022). Development of Management Zones for Site-Specific Fertilization in Mustard fields. <i>Environmental Sciences Proceedings</i>, <i>23</i>(1), 1.
	 https://www.cnmoc.usff.navy.mil/Our-Commands/United-States-Naval- Observatory/Precise-Time-Department/Global-Positioning-System/Global- Positioning-System-Overview/How Stuff Works GPS: Good everyday language explanation https://transportation.trimble.com/sites/default/files/file/2021- 11/Trimble%20Gateway%20T511%20Install%20Guide.pdf Videos Links https://www.youtube.com/watch?v=-rKJDTD4qDY https://www.youtube.com/watch?v=9G6Ceqvpxac https://youtu.be/xHCcWjgciec?si=u0UJwLbjhwQbxsRB

 <u>https://youtu.be/Ilh1Vg7NPEk</u>

MODULES

Weeks	Module Title	Day	Hour	Learning Units	Tasks
			1	Introduction about course	
			2	Digital Agriculture	
		1	3	Precision Agriculture	
			4	Basic Agriculture and different regions of Pakistan.	
			1	What is a Precision Agriculture? Objectives	
		2	2	Elements of Precision Agriculture	
			3	GPS and GIS	
	Introduction to the course		4	Auto Steering System Variable rate application	
Week 1	Overview and status of Digital and Precision Agriculture (PA)		1	Introduction to Electronics	-
			2	Electronics materials	Task
		3	3	Resistors, Capacitor, Inductor, Transistor, diode, Integrated circuits, Transformer, Regulator, Crystal, LEDs, batteries, Switches and potentiometer	1,2,3
			4	Current, resistance and ohm's law, digital logic, Polarity, analogue vs digital	
		4	1	Introduction to Microcontrollers	
			2	Types of Microcontrollers	
			3,4	Introduction to Arduino	
		5	1 -4	Environmental Benefits of Precision Agriculture	
		1	1	Economic Benefits of Precision Agriculture	
			2,3	Discussion and evaluation of tasks	
Week 2	Positioning systems, GPS and DGPS		4	What is the GPS?	-
		2	1	History of the GPS	
			2	GPS Components	Task 4
			3	Global Navigation Space Systems	

				(GNSS)	
			4	Working of GPS	
			1	GPS Determination	
		3	2	Errors	
			3	Differential GPS	
			4	Application of GPS Technology	
			1	Data collection and visualization by using hand held GPS	
		4	2	Data collection and visualization by using hand held GPS	Task 5
			3	Discussion	
			4	Spatial Reference Systems	
		5	1	Datum	
			2	Geoid	
			3	Coordinate Systems	
			4	Introduction ArcMap Software	
		1	1 2	Installation of ArcMap Introduction of ArcMap	
			3	Discussion	
			4	Field Visit	Task 6
		2	1	Selection of study area	Tusko
			2	Boundary Demarcation by RTK- GPS.	
			3	Discussion	
Week 3	Soil Sampling		4	Soil Sampling	
		3	1	Sampling Techniques	Task 7
			2	Traditional Sampling	
			3-4	Targeted Sampling	Task 8
		_	1	Grid based pattern established	
		4	2-4	Data collection from the proximal senor	Task 9
		5	1-4		
Week 4			1	Prepared a database for Analysis	Task 10
		1	2-3		
	Interpolation		4	Collected data from different areas.	
	Techniques		1	Interpolation Techniques	
		2	1-2	Lab performance	Task 11
			3-4	IDW	Task 12
		3	1-4	Kriging	task 13

			1-2	Comparison between	
		4	3	interpolation techniques Discussion	
			- 3 - 4	Test	Task 14
	-			Introduction to Artificial	
		5	1-2	Intelligence	
		5	3-4	Machine Learning overview	
		1	1	Supervised Learning	
			2	Unsupervised Learning	
			3	Reinforcement Learning	Task 15
			4	Dataset Repositories for model training, Dataset acquisition from real-field	Task 16
		2	1	Linear Regression with one variable	
	Artificial Intelligence		2	Cost Function Intuition	
Week 5	ntroduction to Machine		3-4	Gradient Descent	
	Learning	3	1-2	Learning Rate	
			3-4	Model Training Problem	Task 16
		4	1-2	How to select Learning Rate	Task 17
			3-4	Logistic Regression, Feature Scaling, Feature Engineering, Decision Boundary	
		5	1-2	Polynomial Regression	
			3	Problems Related to polynomial Regression	Task 18
			4	What is Overfitting	Task 19
Week 6			М	idterm	
			1	Classification Overview	
			2	Classification Overview	
		1	3	Multiclass Classification	
			4	Multi Label Classification	
			1	Classification Vs. Detection	Task 17
	Data Collection and		2	State-of-the-Art Classification and Detection Algorithm	
Week 7	Training Model	2	3	Regularization to Prevent Overfitting	
			4	Regularized Logistic Regression	
			1	Artificial Neural Network (ANN)	
		3	2	Comparison between Human Neuron with ANN	
			3	Structure of ANN	
1			4	Activation Function (Binary	Task 18

				classification, Multi classification)	
			1	Adam Optimization	
		4	2	Neural Network Layers	
			3	Tensor flow Implementation	
			4	Data in Tensor flow	Task 19
			1	Building a Neural Network Architecture	
			2	Dense Layer Vectorized	
		5	3	Introduction to Google Colab, Implementation of Classification Algorithm	Task 20
			4	Implementation of detection algorithm	Task 21
		1	1-2	Overview of the Flutter framework	
			3	Overview of Flutter framework	
			4	Overview of Flutter framework	
				Setting up the development	
			1	environment	
			2	Setting up the development environment	
Week 8	Introduction to Flutter	2	3	Understanding Dart syntax and principles	
			4	Understanding Dart syntax and principles	
		2	1	Building simple Flutter UI components	
		3	2	Building simple Flutter UI components	

			3	Building simple Flutter UI components	
			4	Building simple Flutter UI components Freelancing and built a CV	Task 22
			1	Deep dive into Dart syntax and principles	
		4	2	Deep dive into Dart syntax and principles	
			3	Deep dive into Dart syntax and principles	
			4	Deep dive into Dart syntax and principles	
			1	Hands-on coding exercises in Dart	Task 23
		5	2	Hands-on coding exercises in Dart	
		5	3	Hands-on coding exercises in Dart	
			4	Hands-on coding exercises in Dart	
	Mobile App		1	Advanced Flutter UI components	
		1	2-3	Advanced Flutter UI components	
			4	Advanced Flutter UI components	Task 24
		2	1	Initial integration of Flutter UI with ML backend	
			2	Initial integration of Flutter UI with ML backend	
Week 9	Development with Flutter - Part 2		3-4	Initial integration of Flutter UI with ML backend	
		3	1	Initial integration of Flutter UI with ML backend	Task 25
			2	Initial integration of Flutter UI with ML backend	
			3-4	Initial integration of Flutter UI with ML backend	
		4	1	Initial integration of Flutter UI with ML backend	Task 26
			2	Initial integration of Flutter UI with ML backend	Task 27

			3-4	Initial integration of Flutter UI	Task 28
			5-4	with ML backend	1 dSK 2ð
			1	Initial integration of Flutter UI with ML backend	
		5	2	Initial integration of Flutter UI with ML backend	
			3-4	Initial integration of Flutter UI with ML backend	Task 29
			1	Incorporating ML models into Flutter apps	
		1	2	Incorporating ML models into Flutter apps	Task 30
	Integrating Machine Learning Models in Flutter		3-4	Incorporating ML models into Flutter apps	
		2	1	Communication between Flutter and ML backend	
			2	Communication between Flutter and ML backend	
Week 10			3-4	Communication between Flutter and ML backend	Task 31
			1	Testing ML model integration	
			2	Testing ML model integration	
		3	3	Testing ML model integration	
			4	Testing ML model integration	Task 32
			1	Testing ML model integration	
			2	Testing ML model integration	Task 33
		4	3	Testing ML model integration	
			4	Debugging and troubleshooting	Task 34
			1	Debugging and troubleshooting	
		5	2	Debugging and troubleshooting	

Week 12	Develop a study aTrain a deep learn	ing mo op with	del n a navi	cMap gation drawer that allows users to	navigate
	Final Exams 42	I			Task 40-
		5	3-4	App publication	Task 39
	Development of Crop Disease Detection App		1-2	Optimizing app performance	
11		4	1-4	Comprehensive testing and debugging	
Week		3	1-4	Integrating ML models with the Flutter app	Task 38
		2	1-4	Implementing features for capturing and processing images	Task 37
		1	1-4	Creating a user-friendly interface	Task 36
			3-4	Debugging and troubleshooting	Task 35

Annexure-I

Tasks for Certificate in Digital and Precision Agriculture

Task No	Task	Description	Week
1.	Enlisting of	Enlist Precision Technologies	Week 1
	technologies	Used in Pakistan	
2.	Use of Multi-meter	Use of Multi-meter (Voltage and Current Measurements).	
3.	Breadboard wiring practice	Make a simple circuit of LED blinking on bread-board.	
4.	GPS	Using mobile GPS and hand held GPS	Week 2
5.	Datum	Enlist the different datum we are using	
6.	RTK-GPS	Demark the study area using RTK-GPS	Week 3
7.	Grid-pattern Establishment	10*10 grid pattern establishment.	-
8.	Data Collection	Soil sampled collected by proximal sensor	
9.	Interpolation	Enlist different interpolation techniques	-
10.	IDW	Note down the procedure of IDW	-
11.	Kriging	Note down the procedure of Kriging and what variables are needed	Week 4
12.	Comparison	What is basic difference in IDW and Kriging	
13.	Test	Survey and mapping by yourself	
14.	Reinforcement Learning	What is reinforcement learning	
15.	Dataset Repositories	Explore different dataset repositories for model training	Week 5
16.	Real-time Data Acquisition	Collection of diverse and distinct dataset from real-field	
17.	Model Training Problems	What are the problems during model training	
18.	Learning rate (Ir)	How to select the lr for achieving the maximum throughput from the applied model	Week 7
19.	Overfitting	What is overfitting and how to prevent it	
20.	Classification Vs. Detection	Difference between classification and detection algorithms from the point of view of application	
21.	Data in Tensor flow	How to import the dataset for training the AI model	1
22.	Google Colab	Introduction to google colaboratory for model training	
23.	Hands-on training of classification model	Implementation of classification model	Week 9

24.	Hands-on training of detection model	Implementation of detection model	
25.	Setup Flutter Project	Create a new Flutter project and set up the necessary dependencies for integrating machine learning models.	
26.	TensorFlow Lite Integration	Integrate TensorFlow Lite into your Flutter app to enable running machine learning models on mobile devices.	Week 10
27.	Load Pre-trained Model	Use a pre-trained image detection model (such as MobileNet or SSD) and load it into your Flutter app.	
28.	Image Preprocessing	Learn and implement image preprocessing techniques to prepare the selected image for the machine learning model.	
29.	Display Results	Display the results of the image detection, including labels and confidence scores, in your Flutter app	Week 11
30.	Real-time Image Detection	Optimize the performance of your Flutter app by exploring techniques like background processing for image detection.	

Precision Agriculture motivation video

https://www.youtube.com/watch?v=-rKJDTD4qDY

Digital Agriculture motivation video

https://www.youtube.com/watch?v=9G6Ceqvpxac

https://youtu.be/xHCcWjgciec?si=u0UJwLbjhwQbxsRB

https://youtu.be/Ilh1Vg7NPEk

MOTIVATIONAL LECTURES LINKS.

TOPIC	SPEAKER	LINK
How to Face	Qasim Ali Shah	https://www.youtube.com/watch?v=OrQte08MI90
Problems In		
Life		
Just Control	Qasim Ali Shah	https://www.youtube.com/watch?v=JzFsyJt-w
Your Emotions		
How to	Qasim Ali Shah	https://www.youtube.com/watch?v=PhHAQEGehKc
Communicate		
Effectively		
Your ATTITUDE	Tony Robbins Les	https://www.youtube.com/watch?v=5fS3rj6elFg
is Everything	Brown David	
	Goggins Jocko	
	Willink Wayne	
	Dyer Eckart Tolle	
Control Your	Jim Rohn	https://www.youtube.com/watch?v=chn86sH0O5U
EMOTIONS	Les Brown	
	TD Jakes	
	Tony Robbins	
Defeat Fear,	Shaykh Atif	https://www.youtube.com/watch?v=s10dzfbozd4
Build	Ahmed	
Confidence		
Wisdom of the	Learn Kurooji	https://www.youtube.com/watch?v=bEU7V5rJTtw
Eagle		
The Power of	Titan Man	https://www.youtube.com/watch?v=r8LJ5X2ejqU
ATTITUDE		
STOP WASTING	Arnold	https://www.youtube.com/watch?v=kzSBrJmXqdg
TIME	Schwarzenegger	
Risk of Success	Denzel	https://www.youtube.com/watch?v=tbnzAVRZ9Xc
	Washington	

* The online success stories of renowned professional can also be obtained from Annex-II

Work ethic is a standard of conduct and values for job performance. The modern definition of what constitutes good work ethics often varies. Different businesses have different expectations. Work ethic is a belief that hard work and diligence have a moral benefit and an inherent ability, virtue, or value to strengthen character and individual abilities. It is a set of values-centered on the importance of work and manifested by determination or desire to work hard.

The following ten work ethics are defined as essential for student success:

1. Attendance:

Be at work every day possible, plan your absences don't abuse leave time. Be punctual every day.

2. Character:

Honesty is the single most important factor having a direct bearing on the final success of an individual, corporation, or product. Complete assigned tasks correctly and promptly. Look to improve your skills.

3. Team Work:

The ability to get along with others including those you don't necessarily like. The ability to carry your weight and help others who are struggling. Recognize when to speak up with an idea and when to compromise by blend ideas together.

4. <u>Appearance</u>:

Dress for success set your best foot forward, personal hygiene, good manner, remember that the first impression of who you are can last a lifetime

5. <u>Attitude</u>:

Listen to suggestions and be positive, accept responsibility. If you make a mistake, admit it. Values workplace safety rules and precautions for personal and co-worker safety. Avoids unnecessary risks. Willing to learn new processes, systems, and procedures in light of changing responsibilities.

6. <u>Productivity</u>:

Do the work correctly, quality and timelines are prized. Get along with fellows, cooperation is the key to productivity. Help out whenever asked, do extra without being asked. Take pride in your work, do things the best you know-how. Eagerly focuses energy on accomplishing tasks, also referred to as demonstrating ownership. Takes pride in work.

7. Organizational Skills:

Make an effort to improve, learn ways to better yourself. Time management; utilize time and resources to get the most out of both. Take an appropriate approach to social interactions at work. Maintains focus on work responsibilities.

8. Communication:

Written communication, being able to correctly write reports and memos. Verbal communications, being able to communicate one on one or to a group.

9. <u>Cooperation</u>:

Follow institute rules and regulations, learn and follow expectations. Get along with fellows, cooperation is the key to productivity. Able to welcome and adapt to changing work situations and the application of new or different skills.

10. <u>Respect</u>:

Work hard, work to the best of your ability. Carry out orders, do what's asked the first time. Show respect, accept, and acknowledge an individual's talents and knowledge. Respects diversity in the workplace, including showing due respect for different perspectives, opinions, and suggestions.